skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cavill, Stuart_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ultrathin epitaxial films of ferromagnetic insulators (FMIs) with Curie temperatures near room temperature are critically needed for use in dissipationless quantum computation and spintronic devices. However, such materials are extremely rare. Here, a room‐temperature FMI is achieved in ultrathin La0.9Ba0.1MnO3films grown on SrTiO3substrates via an interface proximity effect. Detailed scanning transmission electron microscopy images clearly demonstrate that MnO6octahedral rotations in La0.9Ba0.1MnO3close to the interface are strongly suppressed. As determined from in situ X‐ray photoemission spectroscopy, OK‐edge X‐ray absorption spectroscopy, and density functional theory, the realization of the FMI state arises from a reduction of Mn egbandwidth caused by the quenched MnO6octahedral rotations. The emerging FMI state in La0.9Ba0.1MnO3together with necessary coherent interface achieved with the perovskite substrate gives very high potential for future high performance electronic devices. 
    more » « less